Third congress on NeuroRehabilitation and Neural Repair

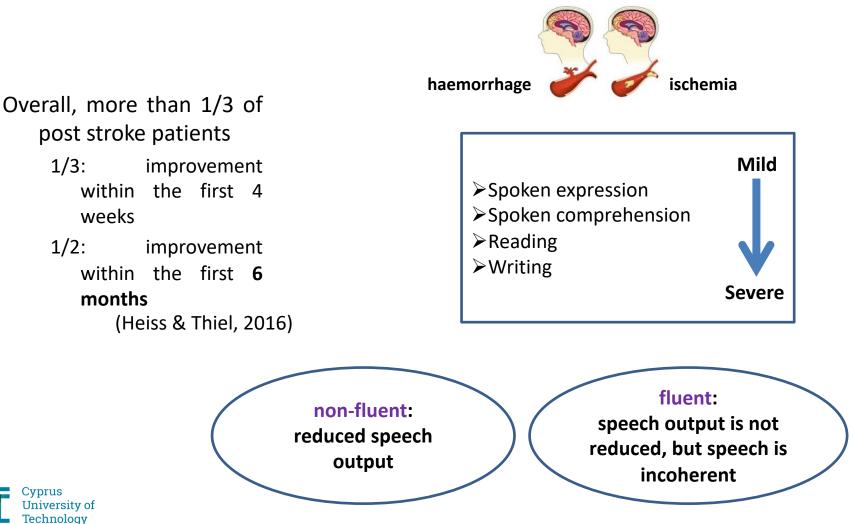
From Science to Evidence-based Practice 22-23-24 May 2019 Maastricht, the Netherlands

Neuronavigated Theta Burst Stimulation (TBS) in Chronic post-Stroke Aphasia

Anastasios M. Georgiou, PhD, Maria Kambanaros, PhD, Ioannis Phinikettos, PhD

Department of Rehabilitation Sciences, Cyprus University of Technology, Cyprus

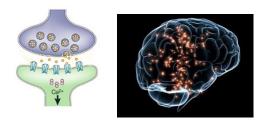
Technology


1

Aphasia

• acquired language disorder

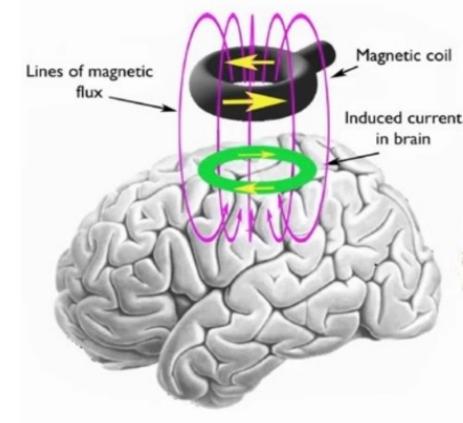
□ injury to the brain – most typically **stroke** in the left hemisphere


Transcranial Magnetic Stimulation (TMS)

- ✓ non-invasive
- ✓ safe (Rossi et al., 2009)

- ✓ investigation of brain areas responsible for specific functions (e.g. language)
- ✓ stimulation of areas of interest for treatment

✓ enhancement of neuroplasticity
 ✓ TMS after-effects represent changes
 in synaptic efficacy (LTP/LTD)



Basic Principles

electromagnetic induction (1831)

- ➤ time-varying current (value/direction) → magnetic field → electric field and hence a secondary <u>current within nearby conductors</u>
 - there is always electric current flowing through neurons
 - TMS stimulates neurons that act as conductors !
- > the more current in the coil, the stronger the magnetic field

TMS with Speech & Language Therapy (SLT) leading to language gains in post stroke aphasia

- Naming (e.g. Hu et al., 2018; Rubi-Fessen et al., 2015)
- Repetition (e.g. Barwood et al., 2013; Seniow et al., 2013)
- Comprehension (e.g. Hu et al., 2018)
- Naming reaction time (e.g. Waldowski et al., 2012)
- Spontaneous speech (e.g. Hu et al., 2018)
- Aphasia profile (Rubi-Fessen et al., 2015; Heiss et al., 2013)

- significant inconsistencies between studies regarding type & intensity of SLT and TMS
 - 30-minute SLT, post-TMS, focusing on **naming** (Hu et al., 2018)
 - 45-minute SLT, post-TMS, focusing on word retrieval (Rubi-Fessen et al., 2015)
 - 60-minute SLT, post-TMS, twice a week focusing on expressive skills (Wang et al., 2014)

TMS as a standalone treatment for aphasia post-stroke

No SLT given

English speakers with chronic aphasia post-stroke

Barwood et al. (2013)

- 6 participants
- > 10 sessions of TMS
 - Improvement
 - ✓ Naming

✓ Repetition

Standardized language measures

- ✓ Length of utterances
- Picture description tasks (i.e. picture description complexity and length of utterance)
 - Up to 12 months posttreatment

Medina et al. (2012)

- 5 participants
- 10 sessions
 - ✓ Improvement

Functional communication outcome measure

 ✓ closed-class words of discourse productivity

✓ Trends

- ✓ unique words, unique nouns, unique verbs, open-class words and correct information units
 - 2 months post-treatment

Objectives

To investigate the effectiveness of Transcranial

Magnetic Stimulation (TMS) as a **Standalone**

treatment for **<u>Chronic</u>** aphasia post-stroke

Methods

Single Subject Experimental Design (SSED)

- ✓ small sample sizes + heterogeneous participants
- ✓ no control group → each participant provides their own control for purposes of comparison
 - 2 pre-treatment assessments (baseline) for performance on language and cognition (problem solving skills) → level of performance prior to treatment & rule out spontaneous recovery (Howard, Best & Nickels, 2015)

the optimal number of pre-therapy probes is currently not clear
 2 probes are sufficient to provide an estimate of both level of performance and rate of change (Howard, Best & Nickels, 2015)

Participant selection

o Inclusion Criteria

- 18-75 y.o.
- Native speakers of (Cypriot) Greek
- First ever stroke (ischemic/haemorrhagic) in the left hemisphere
- Chronic aphasia (>6 months post-stroke) of any type & severity
- Right handed
- Abstinence from Speech & Language Therapy

o Exclusion Criteria

- Prior stroke
- TMS and MRI exclusion criteria (e.g. aneurysm clips or coils)
- Severe dysarthria affecting intelligibility

Language Measures

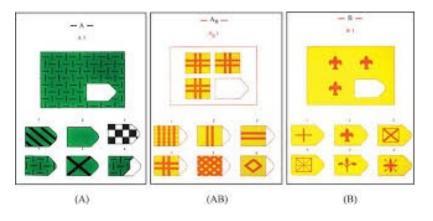
Boston Diagnostic Aphasia Examination-Short Form (BDAE-SF) (Messinis, Kastellakis, Panagea & Papathanasopoulos, 2013)

✓ Language skills in adults suspected of having aphasia
 ➢ comprehension – expression – naming – reading

Peabody Picture Vocabulary Test-Revised (PPVT-R) (Simos, Sideridis, Protopapas & Mouzaki, 2011)

✓ receptive vocabulary at the word level

Greek Object and Action Test (GOAT) (Kambanaros, 2004)


 Image of single nouns and verbs

Multilingual Assessment Instrument for Narratives (MAIN) (Gagarina et al., 2012)

 \checkmark narrative skills \rightarrow functional communication

Cognitive Assessment & Quality of Life Measurement

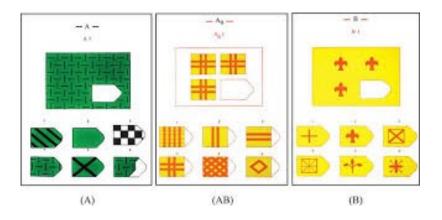
Raven's Coloured Progressive Matrices (RCPM) (Raven, Raven & Court, 1998) → cognition (problem solving skills)

- Stroke and Aphasia Quality of Life scale-39 item (SAQOL-39g) for Greek → quality of life
 - comprehension problems in 2 participants
 - common policy adopted for all \rightarrow proxies' reports

Original Paper Folia Phoniatr Logop 2012;64:179-186 DOI: 10.1159/000340014

Folia Phoniatric

etLogop


Quality of Life after Stroke: Evaluation of the Greek SAQOL-39g

Evangelia Antonia Efstratiadou Evripidis Nicolaos Chelas Maria Ignatiou Vasiliki Christaki Ilias Papathanasiou Katerina Hilari Division of Language and Communication Science, City University London, London, UK

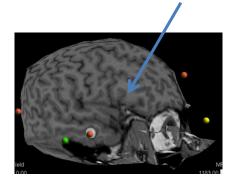
nline: October 25, 201

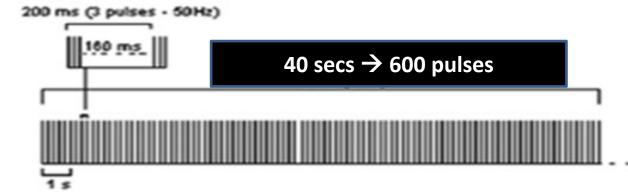
Cognitive testing – problem solving (control variable)

• 2 pre-therapy probes

if a change in language skills is noticed but the control variable (i.e. **problem solving**) remains stable \rightarrow

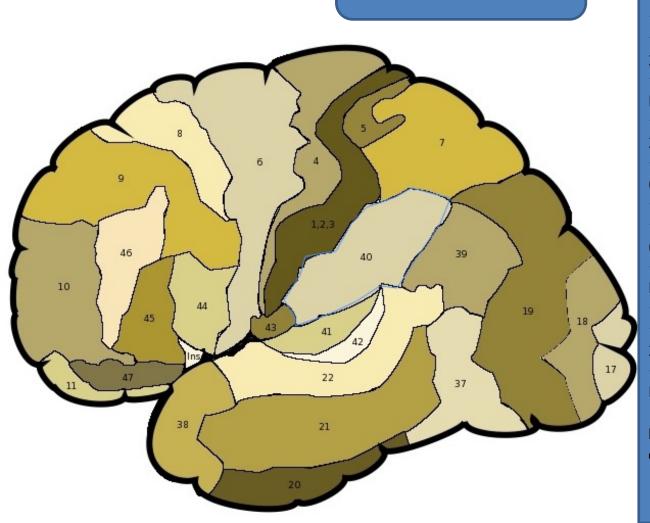
✓ the chances that TMS leads to language specific gains are increased


✓ the possibilities for the placebo and training effects are reduced



Neuronavigated Continuous Theta Burst Stimulation (cTBS)

- 10 consecutive days over the right pars triangularis (pTr)
 - Language performance in chronic post-stroke aphasia
 - 1-day (short-term) post-treatment
 - 2 months (long-term) post treatment



Broca's Area (BA45)

BA4: primary motor cortex BA6: pre-motor cortex

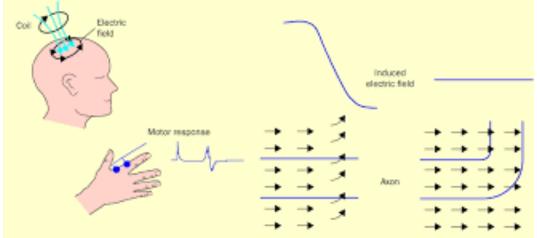
> Pars Triangularis: BA45 Pars Opercularis: BA44

BA45

Language

✓ Semantic > phonological processing (Gold et al., 2005) ✓ Internally specified word generation (Tremblay & Gracco, 2006) ✓ Verbal fluency (Abrahams et al., 2003) ✓ Lexical search (Heim et al., 2005) ✓ Phonological processing (Heim et al., 2005) ✓ Grammatical processing (Sahin, Pinker & Halgren, 2006) ✓ Semantic memory retrieval (Duzel et al., 2001) ✓ Selective attention to speech (left) (Vorobyev et al., 2004) ✓ Sign language (Horwitz et al., 2003) ✓ Affective prosody comprehension (Wildgruber et al., 2005) ✓ Lexical inflexion (Sahin, Pinker & Halgren, 2006) ✓ Reasoning (Goel et al., 1998) ✓ Processing of metaphors)(Rapp et al., 2004)

✓ Generation of melodic phrases (Brown, Martinez & Parsons, 2006)


Memory – movement – others (e.g. music enjoyment)

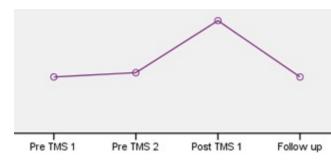
Intensity

First dorsal interosseous

- EMG of the FDI
- → Brain area controlling the FDI identified through neuronavigated TMS → 80% of the minimum TMS intensity output resulting in FDI contraction of a specific value (50 μ V) defined as the intensity value used in all subsequent TMS sessions

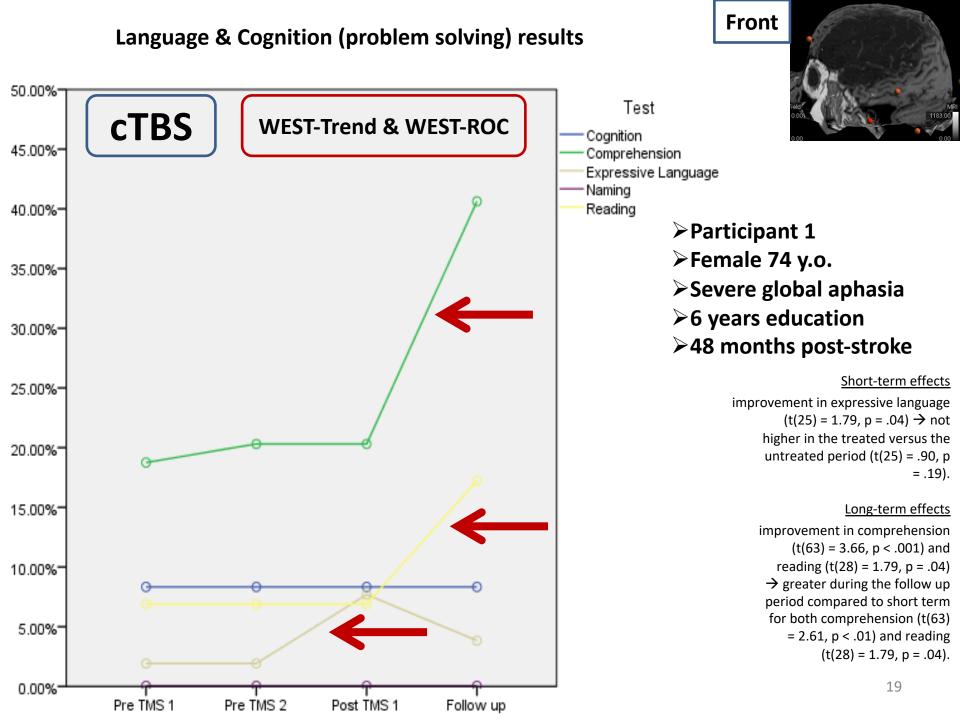
Timeline

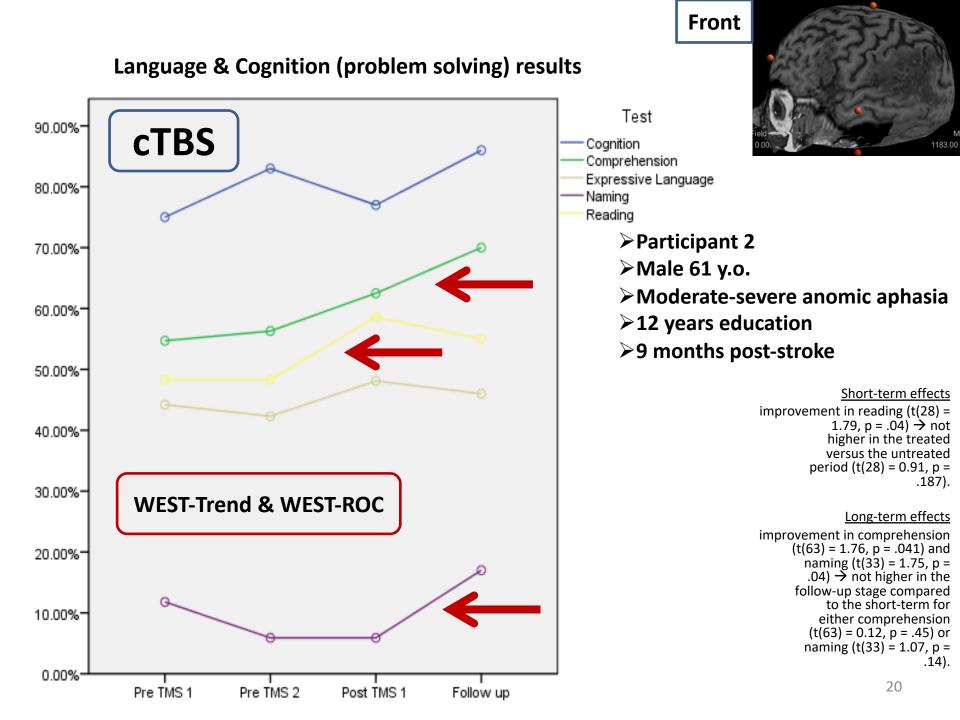
Pre rTMS sessions	rTMS sessions (10 consecutive days)	Post rTMS sessions								
 Background measures 	(
• MRI scan										
• Linguistic testing (BDAE-SF; PPVT-R; GOAT)		• Linguistic testing (BDAE-SF; PPVT-R; GOAT)								
• Functional communication (MAIN)	50 Hz neuronavigated cTBS at 80% RMT applied at right	• Functional communication (MAIN)								
• Cognitive testing (RCPM)	pTr	• Cognitive testing (RCPM)								
• QoL assessment (SAQOL-39g)		• QoL assessment (SAQOL-39g)								
Time (relative to start of treatment)										
– 12 & – 1 days (baseline 1 & 2)	0 days (rTMS therapy)	+ 1 day & + 2 months (post rTMS)								

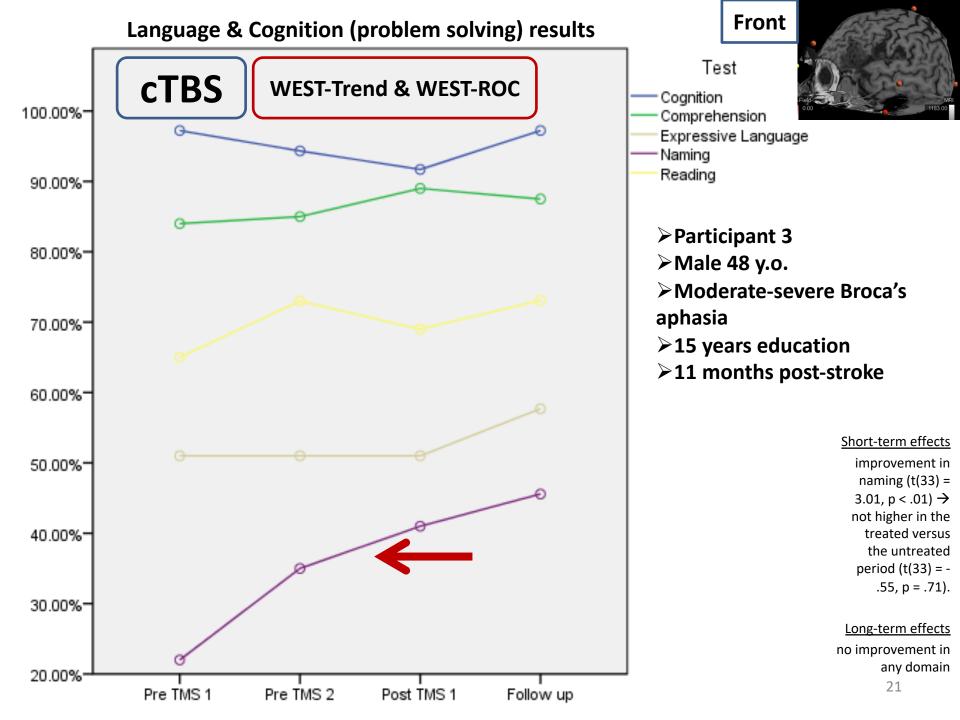

cTBS

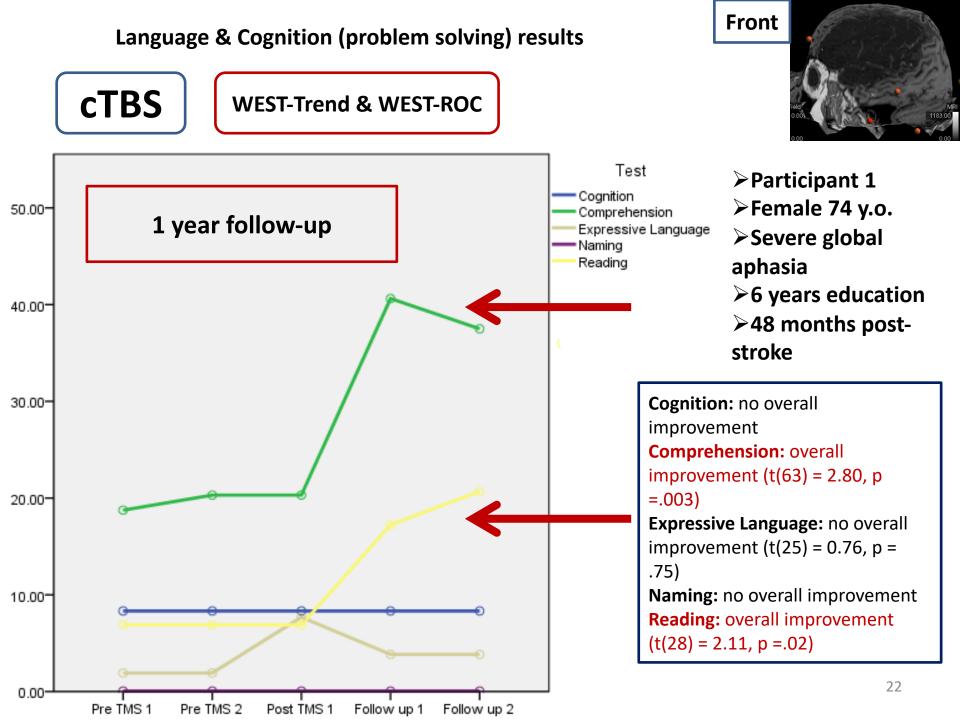
		Age	Handedness	Education	Type of stroke	Months post		Type of	Severity	SLT prior to	Termination
Participant	Sex	(years)	Handedness	(years)	SUOK	stroke	Lesion site (left hemisphere)	Aphasia	of Aphasia	enrolment	of SLT
						(diffuse frontal, parietal and			20 months-2	
						(temporal (middle and superior			times per	
				1			gyri) lobes; insula; basal		ļ	week-45 min	2 years before
1	F	74	right	6	ischemic	48	ganglia	global	severe	ofSLT	enrolment
							Broca's and Wemicke's areas;			6 months - 2	
				l i			arcuate fasciculus; insula;		l 1	times per	2 months
				1			inferior precentral gyrus;		moderate-	week – 45 min	before
2	Μ	61	right	12	ischemic	9	temporal pole	anomic	severe	ofSLT	enrolment
										8 months - 4	
				1			IFG; internal capsule; insula;		ļ	times per	
							caudate nucleus; putamen;		moderate-	week-45	10 days before
3	Μ	48	right	15	ischemic	11	inferior precentral gyrus	Broca's	severe	minutes	enrolment

Data analysis


- Weighted Statistics (WEST) (Howard, Best & Nickels, 2015)
 - \succ WEST-Trend \rightarrow is there is an upward linear trend for improvement?
 - \succ WEST-ROC \rightarrow analyses the amount of change in
 - treated vs the untreated period
 - ≻ long vs short-term




studies with small sample sizes, heterogeneous participants


does not exclude any participant from receiving treatment

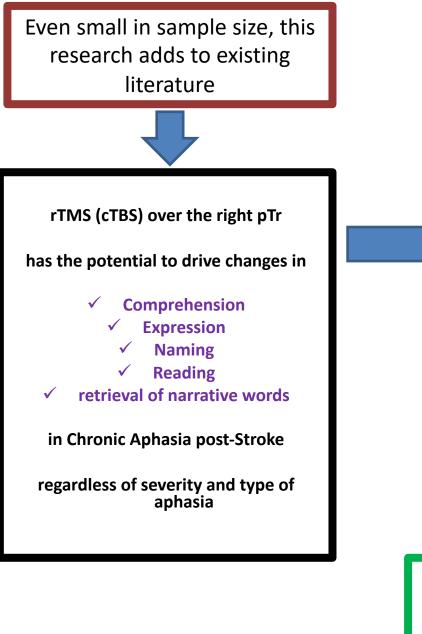
> novelty in small-scale TMS aphasia research

Conclusions (1)

• First of its kind conducted in Cyprus on aphasia and TMS

- First TMS aphasia study that used
 - Single subject experimental design (SSED)
 - Weighted statistics (WEST)

- standardized language measures to assess language skills
- thorough analyses of narrative skills as an index of functional communication skills → number of narrative words increased i) in the short-term in 1 participant and ii) in the long-term in 1 participant
- QoL measure \rightarrow no change

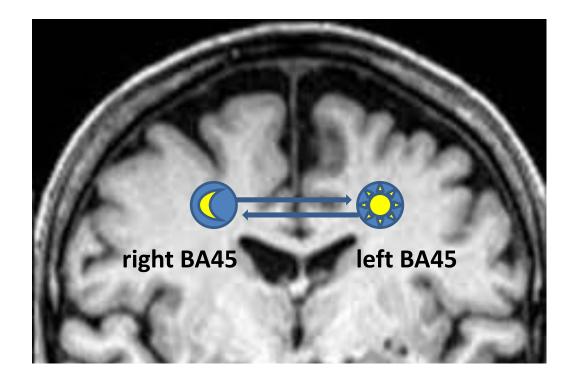


Conclusions (2)

- Problem solving skills (control variable)
 - stable in all participants
- Language skills (several domains):
 - trends for improvement in all participants in the short and/or long-term
 - significant improvement in 1 participant up to 1 year post-treatment
 - oldest participant
 - **severe** global aphasia resulting from diffuse brain lesions
 - 48 months post-stroke
- based on the present preliminary data, it seems that lesion location and extent does not predict cTBS efficacy
- the chances that the change in language performance was attributable to TMS treatment are increased
- > the possibilities for the placebo and training effects are reduced

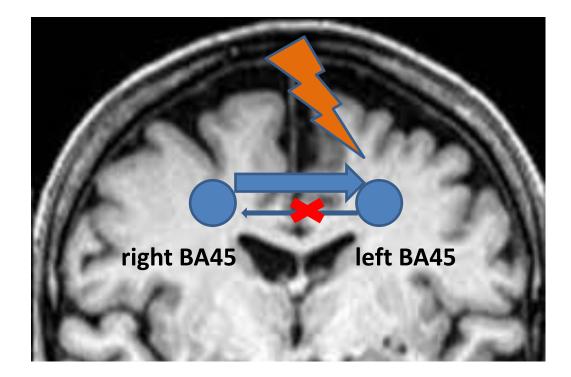
Implications

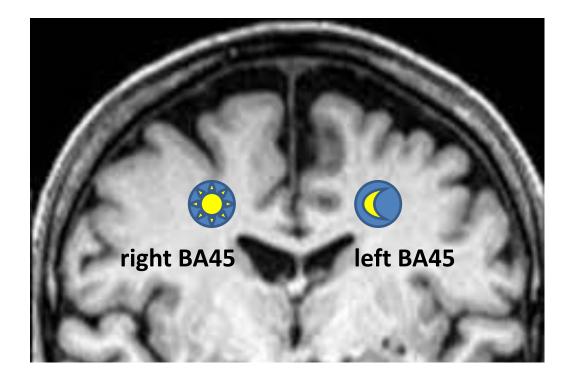
Variability (failure/success) in response to TMS attributed to:


- aphasia type
- aphasia chronicity
- site of stimulation
- TMS stimulation parameters
- SLT
- age
- gender
- genetics & epigenetics

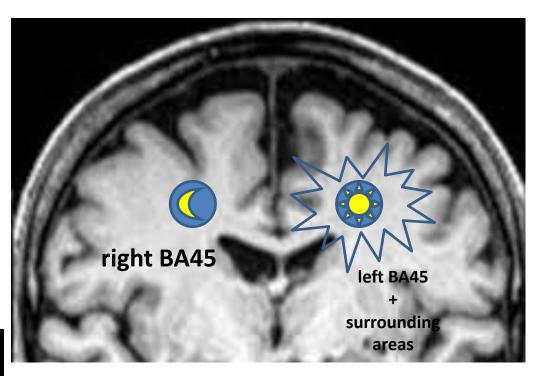
(Coslett, 2016; Lefaucheur, 2014)

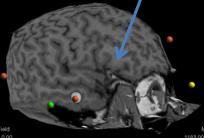
Need for: ≻biomarkers of good responders and non-responders


Backup slides



This protocol is based on a theoretical model for language networks reorganization in the lesioned brain, called "mutual and balanced transcallosal inhibition"





Larger shift of network activity towards the left ipsilesional hemisphere (Heiss et al., 2013; Thiel et al., 2013; Weiduschat et al., 2011)